Рапамицин ( по материалам статьи Jonathan O. Lipton, Mustafa Sahin)

Первоначально разработанный как иммунодепрессант для пациентов с трансплантацией органов, он нашел новую жизнь в качестве потенциального лекарства против старения. Рапамицин не был одобрен для такого применения у людей, но многие геронтологи считают его — или аналогичные средства — лучшей надеждой на фармакологическое замедление процесса старения.

Бесплатные вебинары по антивозрастной медицине Узнайте об особенностях Международной школы Anti-Age Expert, а также о возможностях для совершенствования врачебной практики изо дня в день. Также в программе вебинаров — увлекательные обзоры инноваций в антивозрастной медицине и разборы сложнейших клинических случаев с рекомендациями, которые действительно работают
Узнать подробнее

Что такое рапамицин

Рапамицин представляет собой иммунодепрессант, который назначают перенесшим трансплантацию органов пациентам. Он тормозит действие одного из наших белков — внутриклеточный протеин mTOR.

Рапамицин был выделен в 1972 году из бактерии, обнаруженной на острове Пасхи Рапа Нуи — отсюда и название. В течение многих лет он был малоизвестным препаратом, но в начале 2000-х было обнаружено, что он значительно продлевает жизнь червям, дрожжам, мухам и мышам.

В одном эксперименте исследователи дали рапамицин группе 20-месячных мышей, что эквивалентно людям пенсионного возраста. Они кормили животных небольшими дозами в течение трех месяцев, затем прекратили давать препарат и подождали, пока они умрут. Мыши обычно умирают в возрасте около 30 месяцев, но грызуны, которые употребляли рапамицин, жили в среднем еще 2 месяца. Последний выживший умер более чем через два года после начала эксперимента, в преклонном возрасте 3 года и 8 месяцев — что эквивалентно примерно 140 человеческим годам.

Рапамицин не тестировался таким образом на людях, но, учитывая сходство между биологией мыши и человека, ученые предполагают, что он также способен продлить нашу жизнь.

Рапамицин не продлевает, а сокращает жизнь мышам с короткими теломерами

Рис. 1.

Старая (
слева
) и молодая (
справа
) мыши. Их несложно различить по степени ожирения и состоянию шерсти. Фото с сайта nbcnews.com

Рапамицин — один из самых перспективных кандидатов в «таблетки от старости». Испанские биологи проверили, как он будет действовать на одном из модельных объектов для изучения ускоренного старения — мышах с короткими теломерами, — и обнаружили, что он не продлевает им жизнь, как следовало ожидать, а наоборот, сокращает. Это еще одна история о том, что причины старения тесно взаимосвязаны, и, действуя на одну из них, можно ненароком усилить позиции другой.

Старение — это множество процессов, которые действуют на организм одновременно и постепенно приближают его смерть. Среди них, например, разрушение макромолекул, чрезмерная активация иммунитета, накопление неправильно свернутых белков, перестройка межклеточного вещества и многие другие. Выделить среди них главного невозможно — ни умозрительно, ни экспериментально. Несмотря на то, что каждая исследовательская группа обозначает какую-то причину старения как ключевую (иначе непонятен угол, с которого авторы смотрят на проблему), едва ли кто-то из современных геронтологов считает «свою» причину единственной.

Но если причин несколько, то должно быть и несколько способов с ними справиться — по меньшей мере по одному на каждую. Более того, если причины действуют сообща, то и терапия от старения должна быть составной, чтобы подрубить каждый из корней проблемы. Или все-таки удастся найти один подход, который будет воздействовать на все причины сразу? В пользу последнего варианта свидетельствует то, что некоторые причины старения все же взаимосвязаны друг с другом.

Примером может служить один из самых известных процессов старения, который происходит в большинстве клеток организма — укорочение теломер. Это концевые участки хромосом, которые состоят из «бессмысленных» повторов и выполняют в основном механическую функцию. Они служат этакой набойкой на ДНК, которую не жалко сносить со временем. Перед каждым делением клетки ДНК удваивается, а хромосомы укорачиваются — теряется часть теломерных повторов. Поэтому, если ничего не предпринимать (а некоторые клетки умеют наращивать концы хромосом обратно), теломеры постепенно изнашиваются. Когда от них мало, что остается, и они близки к тому, чтобы исчезнуть совсем, клетка перестает делиться. Для многих клеток и тканей, в которых они расположены, это тяжелая потеря — если соседи этой клетки погибнут, она не сможет произвести потомков, чтобы заполнить пустоту.

В то же время, теломеры могут укорачиваться и по иным причинам, вне связи с клеточным делением. Одной из таких причин может стать другой виновник старения — окислительный стресс. Когда митохондрии по тем или иным причинам не справляются со своей работой (например, их слишком мало, или им не хватает кислорода), в них накапливаются свободные радикалы — химически активные молекулы, которые вступают в реакции с разными клеточными полимерами. Они могут нарушить работу митохондрий, а если просачиваются оттуда в цитоплазму клетки, то повреждают белки и липиды, что ускоряет старение клетки. Если же их достаточно много, то некоторые добираются и до ядра. Там они окисляют молекулы ДНК, причем сильнее всего достается теломерам (см. W. Qian et al., 2021. Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction). При сильном окислительном стрессе системы ремонта ДНК не справляются с починкой теломер и отрезают от них поврежденные участки (см. E. Fouqerel et al., 2021. Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis). Так под действием окислительного стресса теломеры становятся короче.

Если такие взаимосвязи установить и для других причин старения, то можно представить себе ситуацию, когда одного лекарства будет достаточно, чтобы остановить их разом. Группа ученых из испанского Национального центра исследования рака (Spanish National Cancer Centre) предположила, что таким лекарством может оказаться рапамицин. Это вещество известно в медицине как антибиотик и иммуносупрессор, но геронтологи знают его как блокатор mTOR. Это белковый комплекс, который подстегивает рост и развитие клетки — запасание веществ, синтез белка и активное поглощение энергии, — тем самым ускоряя изнашивание клеток. Рапамицин уже неоднократно доказывал свою способность замедлять старение клеток и продлевать жизнь модельных организмов (см. Рапамицин замедляет старение у мышей, Элементы, 15.02.2009), поэтому, кто знает, вдруг он мог бы решить и проблему укорочения теломер?

В качестве модельного объекта, который всерьез страдает от проблемы укорочения теломер, исследователи выбрали мышей с дефектом теломеразы — это тот самый фермент, который клетки могут использовать для наращивания концов хромосом. У мышей, в отличие от человека, теломераза работает во многих клетках в течение всей жизни (K. R. Prowse, C. W. Greider, 1995. Developmental and tissue-specific regulation of mouse telomerase and telomere length). И несмотря на то, что у мышей теломеры в несколько раз длиннее, чем у нас, в отсутствие теломеразы они быстро укорачиваются. Особенно заметно это становится в последующих поколениях, потому что потомки наследуют от родителей все более короткие теломеры. Второе поколение таких мутантных мышей живет около года вместо положенных 2–3 лет. Авторы работы предположили, что рапамицин мог бы справиться с этой проблемой ускоренного старения.

Однако результаты первого же эксперимента оказались строго противоположными (рис. 2). Исследователи начали наблюдать за обычными и лишенными теломеразы мышами в возрасте 3 месяцев. При этом внутри каждой группы часть животных кормили обычным кормом, а другим добавляли в него рапамицин. И если у обычных мышей рапамицин, как и во всех предыдущих работах, сдвинул кривую выживаемости вправо (то есть продлил жизнь), то у лишенных теломеразы мышей эффект оказался противоположным: под действием рапамицина они стали жить меньше.

Рис. 2.

Кривые выживаемости мышей в эксперименте.
Темно-серый
— контрольная группа,
светло-серый
— мыши дикого типа под действием рапамицина,
темно-зеленый
— мыши без теломеразы,
светло-зеленый
— мыши без теломеразы под действием рапамицина. Рядом со
стрелками
обозначено изменение средней продолжительности жизни. Изображение из обсуждаемой статьи в
Nature Communications
Концентрация лекарства в плазме крови у мышей была приблизительно одинаковая, то есть дело не в том, сколько они его ели или как он всасывался в организм. Тогда авторы работы предположили, что повышенная смертность мышей с короткими теломерами под действием рапамицина может быть связана с ростом числа опухолей. Обычно короткие теломеры препятствуют опухолевой трансформации клетки — чем меньше ей осталось делиться, тем сложнее образовать опухоль. Но рапамицин работает как иммуносупрессор, то есть подавляет ответ организма на неконтролируемый рост клеток. Могло оказаться, что рапамицин противодействует эффекту коротких теломер и усиливает рост опухолей. Но это не так: после смерти ни у кого из мышей с короткими теломерами ученые не обнаружили следов канцерогенеза.

Судя по всему, что-то внутри клеток животных с короткими теломерами помешало рапамицину сработать. В пользу этого говорит и еще одно наблюдение, которое сделали исследователи: мыши с дефицитом теломеразы не теряли вес под действием рапамицина. В то же время, у обычных животных это происходит неизменно, потому что рапамицин блокирует рост жировой ткани.

Один из непосредственных эффектов, которые mTOR оказывает на клетки — усиление синтеза белков. Поэтому его активность можно оценивать по уровню фосфорилирования рибосомального белка S6: чем он выше, тем интенсивнее синтез. В обычных клетках рапамицин снижает фосфорилирование S6, тормозя работу рибосом. Исследователи измерили концентрацию фосфорилированного S6 у мышей, которые уже два месяца сидели на обычной или рапамициновой диете. Оказалось, что, в отличие от обычных животных, в печени мышей с короткими теломерами рапамицин не сработал: уровень фосфорилирования S6, несмотря на введение лекарства, остался прежним. То же произошло и с другими потенциальными эффектами рапамицина: у мутантных мышей он не повысил уровень аутофагии (самоперевания) в клетках и не снизил количество митохондрий — то есть не повлиял на интенсивность обмена веществ в клетках. Это означает, что рапамицин не выполнил свою основную функцию — не заблокировал сигнальный путь mTOR.

Чтобы выяснить, действительно ли лекарство не работает, авторы работы проверили, что происходит в клетках печени мышей с короткими теломерами через два часа после его введения. Оказалось, что за два часа рапамицин снижает количество фосфорилированного S6 — подобно тому, что происходит у обычных животных. Таким образом, проблема оказалась не в самом рапамицине. Коль скоро он может выполнить свою работу в клетках, дело может быть в том, что его работы просто недостаточно.

Исследователи предположили, что активность mTOR в клетках мышей с короткими теломерами сама по себе настолько высока, что рапамицин не может ее снизить. И действительно, когда они сравнили количество фосфорилированного S6 у обычных и мутантных животных, то заметили, что у мышей с короткими теломерами оно стабильно выше. Затем они отсеквенировали РНК в клетках печени и обнаружили, что у животных с короткими теломерами выше экспрессия генов, которые связаны с разными процессами обмена веществ — расщеплением глюкозы, делением и ростом, синтезом белков и жиров — и все они находятся под контролем mTOR.

Но если mTOR-путь так активен в клетках мышей с короткими теломерами, а его блокатор рапамицин сокращает их жизнь, значит, mTOR может служить компенсаторным механизмом и смягчать эффекты от недостатка теломеразы. Чтобы проверить эту гипотезу, авторы работы создали двойных нокаутных животных, у которых не работала не только теломераза, но и S6-киназа (S6K) — белок, который отвечает за фосфорилирование S6. Измерив продолжительность их жизни, исследователи заметили следующую закономерность (рис. 3). Животным с работающей теломеразой нокаут S6K продлевает жизнь, поскольку действует аналогично рапамицину, блокируя эффекты mTOR-пути. У первых двух поколений животных без теломеразы разницы в длине жизни практически нет. А вот у третьего поколения мышей с короткими теломерами нокаут S6K, наоборот, сокращает жизнь. Таким образом, при длинных теломерах без mTOR-пути можно обойтись, а его блокада работает на продление жизни. Но при коротких теломерах он становится критичным для выживания.

Рис. 3.

График выживаемости мышей с разными наборами мутаций. В каждой паре более темный оттенок обозначает животное с работающей S6-киназой, светлый — нокаут по S6K.
Серый
— мыши с работающей теломеразой,
красный
— первое поколение мышей без теломеразы,
синий
— второе,
зеленый
— третье.
Пунктирная линия
обозначает медиану продолжительности жизни: время, до которого доживает половина популяции.
Красная стрелка
указывает на резкое снижение продолжительности жизни в третьем поколении мышей без теломеразы при нокауте S6K. Изображение из обсуждаемой статьи в
Nature Communications
Таким образом, идея использовать одно оружие против нескольких причин старения одновременно потерпела поражение, — по крайней мере, выбранное исследователями оружие для нее не подходит. Блокируя mTOR, рапамицин тем самым мешает выживать клеткам с короткими теломерами.

В обсуждаемой статье исследователи работали только с мышами, однако и у людей есть заболевания, которые связаны с сильным укорочением теломер. Это, например, врожденный дискератоз (dyskeratosis congenita) — дефицит теломеразы, который поначалу сказывается на кожной пигментации, а затем нарушает работу костного мозга, что и приводит к смерти пациентов. Таким людям, как и мышам с нокаутом теломеразы, рапамицин и его аналоги тоже, вероятно, помочь не смогут.

В то же время, пока совершенно непонятно, в какой степени блокаторы mTOR окажутся применимы для пожилых людей. Известно, что с возрастом средняя длина теломер у человека сокращается, но станет ли это препятствием для продления жизни с помощью рапамицина и подобных ему препаратов? Или же придется как-то воздействовать по очереди рапамицином и активаторами теломеразы, чтобы добиться нужного эффекта? Так или иначе, уже понятно, что простого ответа на этот вопрос не будет.

История с рапамицином и теломерами — показательный пример проблемы, с которой сталкивается современная наука о старении. Каждый раз, когда геронтологи обнаруживают какой-нибудь процесс, который усугубляет старение организма, и придумывают способ этот процесс остановить, у него неизменно обнаруживается оборотная «положительная» сторона. Так, например, сокращение теломер можно считать защитой от рака. Окислительный стресс — это стимул, который побуждает клетку мобилизовать внутренние резервы на борьбу с неблагоприятными условиями. А mTOR, в свою очередь, спасает клетки в условиях слишком коротких теломер. Поэтому раз и навсегда объявить какую-нибудь из причин старения главным врагом и развязать против нее войну у нас едва ли получится. Вместо решительного наступления потребуется изворотливая дипломатия — взвешивание рисков, чередование лекарств, поиск компромиссов, которые могли бы продлить жизнь организма, не сделав его уязвимым для очередного врага.

Источник:

I. Ferrara-Romeo, P. Martinez, S. Saraswati, K. Whittemore, O. Graña-Castro, L. T. Poluha, R. Serrano, E. Hernandez-Encinas, C. Blanco-Aparicio, J. M. Flores, M. A. Blasco. The mTOR pathway is necessary for survival of mice with short telomeres //
Nature Communications
. 2021. DOI: 10.1038/s41467-020-14962-1.

Полина Лосева

Рапамицин в продлении жизни

Лекарства, которые назначают для лечение возраст-ассоциированных заболеваний — таких как гипертония, диабет, рак простаты, похожи на антивозрастные вещества своим ингибирующим действием на гиперфункцию клеток, запускаемую с помощью mTOR.

Так, метформин, который выписывают диабетикам, продлевает жизнь мышей и червей. Аспирин снижает риск тромбоза и рака пищеварительной системы.

Считается, что рапамицин проявляет свои свойства продления жизни, имитируя эффект ограничения калорийности, один из самых надежных способов продления жизни у животных. Он нацелен на сигнальную молекулу mTOR, которая является важным узлом в путях восприятия питательных веществ. Отсутствие еды выключает mTOR и активирует аварийные системы, которые позволяют нам пережить периоды голода.

Эти пути запускают аутофагию, процесс, с помощью которого клетки поглощают дисфункциональные органеллы и молекулы для получения энергии. Это уменьшает накопление мертвого органического материала, который обычно забивает наши ткани по мере того, как мы стареем, и, следовательно, замедляет или даже обращает вспять процесс старения.

Онлайн обучение Anti-Age медицине Изучайте тонкости антивозрастной медицины из любой точки мира. Для удобства врачей мы создали обучающую онлайн-платформу Anti-Age Expert: Здесь последовательно выкладываются лекции наших образовательных программ, к которым открыт доступ 24/7. Врачи могут изучать материалы необходимое количество раз, задавать вопросы и обсуждать интересные клинические случаи с коллегами в специальных чатах
Узнать подробнее

Считается, что проведение клинических испытаний рапамицина на людях практически невозможно — для выявления каких-либо эффектов долголетия потребуются десятилетия.

К сожалению, лекарство, подобное рапамицину, предназначенное для предотвращения респираторных заболеваний у пожилых пациентов, не прошло клинические испытания. Препарат рано показал себя многообещающим, и считалось, что он действует, замедляя иммунное старение или возрастное снижение иммунной системы. Однако многие другие ингибиторы mTOR находятся в стадии разработки.

Рапамицин: недолгая, но интересная исTORия

Луиcу 27, он работает на сборочном конвейере в Три Риверс (Three Rivers) в штате Мичиган. А Чарльз — обычный 50-летний семьянин со средним уровнем заработка из Атланты. Вэну 72, и он пенсионер. Что объединяет этих троих, кроме их американского гражданства? Они все не хотят умирать и употребляют препарат рапамицин, который, как они верят, замедлит их старение. В России биохакеры рапамицин почти не употребляют — но не потому, что не хотят, а потому что он, мягко скажем, дороговат — от 450 рублей за таблетку. Но можно предположить, что в будущем он станет дешевле, и тогда…

Впервые лекарство от старения начали искать тысячи лет назад. Ещё Гильгамеш пытался найти способ жить вечно. (Парень обратился к пережившему потоп бессмертному старцу и был послан им… на дно морское искать определённый тип коралла. Поиски закончились не то чтобы особенно успешно — Гильгамеш давно не с нами). Далее — античный историк Геродот писал про дарующий долгожительство фонтан, а в Средние века вечную жизнь сулил отважным рыцарям Святой Грааль. С тех эпических времён пор много воды утекло, но несмотря на то, что мы далеко продвинулись в понимании мира в сравнении хоть с Гильшамешем, хоть с людьми Средневековья, рецепт бессмертия так и не найден.

Сейчас популярен активизм по радикальному продлению жизни. Приверженцы идеи хотят продлить здоровую жизнь человека методами классической медицины. Они выступают за скорейшее начало испытаний препаратов от старости на людях, поэтому лоббируют признание старения отдельным заболеванием. Биохакеры, вслед за ними, начинают экспериментировать на себе с препаратами, показавшими на модельных животных эффективность в борьбе со старостью. Таким образом биохакеры пытаются заполнить пробел, обусловленный отсутствием клинических испытаний, и предоставить в распоряжение науки хотя бы одиночные примеры продолжительного действия тех или иных препаратов (ну и, конечно, продлить себе жизнь!).

Один из таких многообещающих препаратов, полюбившихся биохакерам, — рапамицин. И хотя в арсенале врача он появился на рубеже прошедшего и нынешнего веков, его история как потенциального лекарства от старости началась несколько позже…

Как ходить босиком и не подхватить столбняк

История рапамицина начинается в 1965 году. Доктор Стэнли Скорына (Stanley Skoryna) из Университета Макгилла в Монреале (McGill University, Montreal) тогда убедил ВОЗ предоставить финансирование для пилотного проекта по изучению взаимосвязи между наследственностью, болезнями и природой острова Пасхи. В результате была организована канадская исследовательская экспедиция на этот остров. В её ходе было замечено, что хотя аборигены ходили босиком, они не подхватывали столбнячную палочку и грибки. Учёные решили, что в земле острова содержится что-то особенное, и, собрав её образцы, оставили их на хранение в университетской лаборатории.


Остров Пасхи. Историческая гравюра.

В 1975 году при поддержке компании Ayerst

(
Ayerst, McKenna and Harrison, Ltd.
) Сурендра Натх Сегал (Surendra Nath Sehgal) и коллеги вернулись к этим образцам и попытались найти в них бактерии, выделяющие противогрибковые вещества (бактерии, к слову, могут храниться замороженными много лет). Эксперимент прошёл успешно, и они наткнулись на
Streptomyces hygroscopicus
(потом переименованную в
S. rapamycinicus
), выделяющую в процессе жизнедеятельности антибиотик из класса макролидов с противогрибковым действием. Вещество было названо рапамицином в честь названия острова на языке местного населения —
Rapa Nui
. Но в дальнейших исследованиях выяснилось, что вещество обладает нежелательным побочным действием — оно подавляет иммунитет! (Когда вы лечитесь от грибковых инфекций, иммунодепрессия — это не то, чего вы хотите). В итоге о нём забыли, а лаборатория компании переехала из Канады в Принстон (Princeton University), Нью Джерси. Но заинтересованность Сурендры Натха Сегала в рапамицине была настолько велика, что он перед переездом заготовил вещество в большом количестве, зная, что на новом месте у него не будет компонентов и условий, и привёз с собой.

В 1987-м, когда иммунодепрессанты стали использовать для подавления иммунного ответа при пересадке органов, исследователи из канадской компании вернулись к рапамицину. Их ждал сюрприз — в клинических испытаниях он оказался более мощным (до 100 раз) и менее токсичным в качестве иммунодепрессанта, чем использовавшийся на тот момент циклоспорин А. Это породило целое направление исследований. К 1999 году было доказано, что его безопасно применять на людях, и FDA

одобрило это вещество. Согласно патенту
Pfizer
, лекарство выпускалось под названием рапамун, а действующему веществу дали второе название, принятое Советом США по принятию наименований (The United States Adopted Names Council), — сиролимус.

Но было и другое направление исследований. Ещё в 1990-х годах Майкл Холл (Michael Nip Hall) и его коллеги из Университета Базеля (Universität Basel) взялись за проект описания на клеточном уровне фунгицидного действия вещества. Джо Хайтман (Joe Heitmann), постдок в университете Базеля, вырастил обычную культуру дрожжей и поместил их в чашку Петри, на которую предварительно был нанесён рапамицин. Большинство дрожжей умерли, но некоторые мутировавшие дрожжевые клетки выжили. Хайтман суммарно выделил примерно 20 разных мутаций, дающих резистентность к рапамицину. Все эти мутации приходились на три разных гена, кодирующих белки FKBP

и два других из класса киназ, позднее названных
TOR1
и
TOR2
и объединённых под названием
TOR
(от Target of Rapamicyn, цель связывания рапамицина). Подробнее про клеточную химию рапамицина можно посмотреть лекцию по ссылке.

Наблюдая за процессами, в которые вовлечён белок, исследователи заметили, что мушки-дрозофилы с пониженной активностью TOR, как и особи других видов с такой особенностью, по размеру меньше, чем их собратья без мутаций. Сначала большая часть работавших над темой склонны были считать, что у этих животных просто меньше клеток и что TOR влияет на процессы клеточного деления. То есть, мутация гена и ослабление активности белка, по их мнению, должны были оказывать цитостатическое (останавливающее рост количества клеток) действие. Но точного ответа не было, поэтому Томас Нойфельд (Тhomas Neufeld) в один прекрасный момент задался целью прояснить, за что отвечает TOR

: за размер клетки или за количество клеточных делений. Для этого он посчитал количество клеток в отдельно взятых участках крыльев мушек с мутацией и без мутации и далее экстраполировал эту пропорцию на всё тело мушки. Число клеток двух мух, большой и маленькой, оказалось одинаковым! Поэтому он сделал вывод, что разница в размерах нормальной и мутантной мухи определяется именно размером клеток, а не их числом. То есть, белок
TOR
контролирует рост клетки, хотя раньше считалось, что его ничто не контролирует и он происходит спонтанно.

Далее начались эксперименты для дальнейшего выяснения механизмов TOR на мышах и даже на культурах человеческих клеток. Вскоре был обнаружен и одноимённый сигнальный путь mTOR

(mammalian TOR, белок TOR у млекопитающих), даже два,
mTORC1
и
mTORC2
(
C
в данных аббревиатурах отвечает за слово
complex
, комплекс), причём только первый оказался чувствителен к рапамицину. И несмотря на то, что оба контролируются фактором роста,
mTORC1
также реагирует на уровень питательных веществ, аминокислот, на уровни энергии и кислорода.

Сделать больше, сделать лучше!

Исследования, связанные с рапамицином, не прекращались с 1990-х годов, а с 2012-го года их стало ещё больше — из-за того, что истёк срок патента Pfizer

и многие компании оказались заинтересованы в производстве лекарства. Какие были направления исследований? Во-первых, искали новые бактерии, которые производили бы больше вещества. Пример такого исследования: в 1995-м году учёные из Японии, префектуры Шизука, нашли новую бактерию,
Actinoplanes sp.
, которая производила в десять раз больше рапамицина, чем
S. rapamycinicus
. Исследования также ведутся в области генетики: какие кластеры генов у каких бактерий отвечают за большее или меньшее производство рапамицина.

Во-вторых, идёт поиск эффективного способа производить рапамицин, так как сейчас это очень дорогой и трудоёмкий процесс, что значительно повышает его цену. Учёные исследуют, чем «кормить» бактерию, при какой температуре и кислотности содержать, чтобы «надоить» из неё больше вещества. Например, если поместить её в среду, богатую фруктозой, удастся добыть довольно много рапамицина, но не максимально возможное количество. При этом, создать благоприятную среду в биореакторе должно быть не слишком сложно. Кстати, недавно для изучения влияния питательных веществ на производство рапамицина совместно с другой методологией были использованы нейронные сети, которые помогли исследователям понять, что аппетит бактерии отлично удовлетворяют манноза, L-лизин и соевый шрот, представленные в определённой концентрации. В результате выработка рапамицина бактерией S. hygroscopicus

достигла 320,89 мг/л. Подробнее про текущие способы биосинтеза рапамицина можно почитать по ссылке.

Ищут учёные и новые функциональные аналоги рапамицина, т.н. рапалоги, которые, подобно рапамицину, ингибируют работу mTOR

. Многие новые рапалоги были получены с помощью биологических модификаций. Компания
Novartis
рассмотрела 28 бактерий и 72 грибка, известных способностью к биотрансформациям, и нашла таким образом несколько рапалогов (39-O-demethylrapamycin, 27-O-demethylrapamycin, 16-O-demethylrapamycin). Разные рапалоги могут воздействовать более таргетированно на то или иное заболевание, например, на разные виды злокачественных опухолей, или лучше усваиваются. Например, эмсиролимус лучше усваивается, чем оригинальный рапамицин.

Рапамицин в продлении жизни

Первые попытки изучить, как сигнальный путь mTOR

, а соответственно и рапамицин, связаны с продолжительностью жизни, относятся к 2000-м. Ранние эксперименты такого рода были проведены на пивных дрожжах, а также на беспозвоночных — червях и мушках-дрозофилах. Тогда было обнаружено, что мутации в гене
TOR
продлевают продолжительность жизни этих модельных животных. Следующим важным шагом было продемонстрировать такой эффект у млекопитающих.

В 2009 году Дэвид Харрисон (David Harrison) и коллеги из разных исследовательских университетов США стали экспериментировать на лабораторных мышах. Планировалось, что это будут животные «средних лет», но в связи с трудностями с формулированием протокола кормления эксперимент начали довольно поздно для мышиной жизни — когда мышам было 20 месяцев от роду, что примерно эквивалентно 60 годам у людей. Каждая вовлечённая в исследование лаборатория, а их было три, проводила эксперименты параллельно по одному и тому же протоколу. Суммарно в исследовании приняли участие 2000 мышей. Учёные позаботились о том, чтобы мыши были генетически разнообразные, чтобы избежать эффекта, когда все они случайно окажутся более восприимчивы к препарату, чем в среднем по популяции (такое возможно с генетически гомогенными лабораторными животными). Грызунам вместе с едой давали в качестве добавки рапамицин в дозировке 2,24 мг на один килограмм веса (если принять, что стандартный вес средней лабораторной мыши — 20 граммов, то каждой особи давали по 0,0446 мг вещества). В итоге, продолжительность жизни мышей удалось продлить на 14% по сравнению с контрольной группой. Такое было ранее возможно только с помощью диеты с ограничением калорий. Именно тогда впервые было выдвинуто предположение, что ограничение калорий, известное способностью продлевать жизнь модельных животных, и рапамицин работают одинаково — задействуя сигнальный путь mTOR

. Но были и сомнения — на протоколе с голоданием мыши обычно теряли вес, да и работал он только если мышей сажали на диету с самого начала жизни. Лишь значительно позже выяснили, что активность TOR регулируется количеством доступных питательных веществ.

Есть и свидетельства, хоть и пока только косвенные, в пользу того, что рапамицин способен продлять и человеческую жизнь. Начнём с того, что если описывать потенциальные и зарегистрированные клинические применения рапамицина и рапалогов, то придётся вспомнить целый ряд заболеваний. У него есть следующие потенциальные применения:

  • В борьбе и профилактике нейродегенеративных заболеваний, таких как болезни Альцгеймера и Паркинсона (исследования находятся на стадии доклинических испытаний), он потенциально применим как нейропротектор;
  • В профилактике и лечении некоторых видов рака, таких как опухоли кишечника, почек, мозга, лимфоузлов. Рапамицин считается полезным, так как при некоторых видах опухолей наблюдается повышенная активность mTORC1
    . Также он показал пользу во многих доклинических испытаниях, и сейчас ведётся ряд клинических испытаний на I и II стадии;
  • В терапии сердечно-сосудистых заболеваний — для профилактики инфаркта, фиброза и повторного стеноза артерий. Потенциально снижает кардиотоксичность антиретровирусных препаратов, применяемых, например, при терапии ВИЧ. Большая часть исследований находится в доклинической фазе;
  • Как противовоспалительный агент при ревматоидном артрите (когда другие НПВС не оказывают достаточного болеутоляющего эффекта), он снижает воспаление при красной волчанке. Данные для аутоиммунных заболеваний основаны на наблюдении пациентов, принимающих препарат с целью иммунодепрессии, и сравнении их результатов с таковыми в целом по популяции;
  • Для омоложения кожи (в виде омолаживающего крема для кожи, находится в стадии клинических испытаний), зубов (испытания на мышах);
  • Рапамицин может помочь в борьбе с ожирением (доклиническая фаза).

Многие из перечисленных заболеваний связаны со старостью. Чем старше мы, тем выше вероятность инфаркта, стеноза, злокачественных опухолей, Альцгеймера и Паркинсона. «Может быть, если этот препарат продлевает жизнь лабораторных животных и противодействует болезням, связанным со старостью, он и является лекарством от старости? — Примерно такое можно услышать от энтузиастов радикального продления жизни, — Эффект достигается из-за того, что рапамицин замедляет клеточный цикл». Михаил Благосклонный (Michael Blagosklonny), онколог и геронтолог из Комплексного онкологического центра Розуэлл-парка (Roswell Park Comprehensive Cancer Center) и энтузиаст рапамицина, в своей статье даже заявляет, что решение не принимать рапамицин скажется на продолжительности жизни так же, как решение продолжать курить! Но серьёзных клинических доказательств таким утверждениям нет.

В 2014 году был начат проект The Dog Ageing Project

— массовое испытание воздействия рапамицина на продолжительность жизни домашних собак. В проекте могут участвовать как молодые, так и старые собаки разных пород. Как только исследование будет завершено, у нас будет больше оснований считать, что у рапамицина есть шанс продлить здоровую жизнь человека. Или нет.

Коварство рапамицина

Рапамицин как в общем и целом безопасный для применения у людей был зарегистрирован FDA

ещё в 1999 году. Нет ни одного зарегистрированного случая смерти от передозировки рапамицином — даже в неудачной попытке самоубийства, когда 18-летняя девушка приняла 103 таблетки рапамицина по 1 мг, единственным обнаруженным эффектом было повышение общего холестерина в крови.

Но когда препарат регистрировали в FDA

, регистрация сопровождалась предупреждением, что все препараты-иммунодепрессанты «из-за того, что подавляют иммунитет, могут повышать склонность человека к инфекциям, могут способствовать развитию опухолей, таких как лимфома и рак кожи». В принципе, всё логично: чем хуже иммунитет — тем хуже он атакует мутантные, например, раковые, клетки. Но клиническая практика опровергает такую логику. Михаил Благосклонный утверждает, что ярлык иммунодепрессанта надолго оттолкнул публичный интерес от препарата.

Это правда, что рапамицин может увеличивать тяжесть бактериальных инфекций, так как ингибирует функцию нейтрофилов, а также вызывает легкую тромбоцитопению, анемию и лейкопению (низкое количество тромбоцитов, красных кровяных телец и лейкоцитов соответственно). Он замедляет процессы клеточного деления, следовательно и кровяных клеток в организме оказывается меньше.

Среди других неприятных побочных эффектов — стоматит и микозит (изъязвление слизистых оболочек рта и пищеварительного тракта). Редким побочным эффектом рапамицина является неинфекционная интерстициальная пневмония. Но эти побочные эффекты имеют обратимый характер, и, если они не мешают жить, то сторонники долголетия утверждают, что «ничего страшного» и польза превышает вред, а если мешают — «можно просто снизить дозу». В целях предотвращения старения, согласно Благосклонному, рапамицин может использоваться либо периодически (например, один раз в неделю), либо в низких суточных дозах, и может быть отменён, если возникнут какие-либо неприятные «побочки».

Много споров было вокруг такого побочного эффекта как развитие временного диабета. Здесь можно вспомнить, что голодная диета, которая имеет схожее с рапамицином влияние на процессы старения, также вызывает инсулинорезистентность и у мышей, и у людей. Обе эти интервенции работают схожим путём: обычно mTOR активируется тем больше, чем больше питательных веществ в среде. Логика за этим такая: во время длительного голодания использование глюкозы не связанными с мозгом тканями должно быть подавлено, чтобы обеспечить адекватное снабжение мозга энергией. Голодная диета хоть и вызывает диабет, но не считается вредной, поэтому и диабет, вызванный рапамицином не должен считаться вредным. В конце концов, можно просто дополнить рапамицин метформином, ещё одним потенциальным геропротектором, и убрать симптомы диабета — примерно так говорит в своей статье Михаил Благосклонный. (Позиция редакции не обязательно совпадает с такой точкой зрения).

Заключение

В настоящее время нет однозначного заключения учёных, подходит рапамицин или нет на роль эликсира молодости. Кто-то спешит провозгласить его практически панацеей, кто-то предупреждает: «Но ведь побочные эффекты, как и сам эффект, ещё не до конца изучены!» Скорее всего правда где-то посредине: с одной стороны, мы знаем о веществе довольно много, в том числе и из клинической практики. С другой стороны, нет гарантии, что рапамицин сработает на людях так же, как и на мышах или собаках.

В данный момент ведётся масса испытаний на людях, которые помогут ответить на множество вопросов про этот препарат. Но все эти исследования касаются лишь определённых заболеваний, и в большинстве не касаются проблемы собственно старения. Поэтому лучшее, что можно сделать сейчас — это лоббировать признание старения заболеванием и таким образом дозволения клинических испытаний рапамицина и других препаратов от старения на людях.

Пока у нас нет таких испытаний, мы будем довольствоваться примерами единичных смельчаков, таких как Вэн, Чарльз и Луис, а также практикующий врач Алан Грин (dr. Alan Green) из США, который назначает своим пациентам рапамицин для лечения старости и принимает его сам.

Литература

Yoo, Y.J., Kim, H., Park, S.R. et al. An overview of rapamycin: from discovery to future perspectives. J Ind Microbiol Biotechnol 44, 537—553 (2017). https://doi.org/10.1007/s10295-016-1834-7

Patel, G.K., Goyal, R. and Waheed, S.M., 2021. Current Update on Rapamycin Production and its Potential Clinical Implications. High Value Fermentation Products, Volume 1: Human Health, p.145.

Рапамицин и молодость кожи

Исследование, проведенное командой Медицинского колледжа Дрексельского университета в Филадельфии (США), показало, что иммуносупрессор рапамицин также оказывает антивозрастное действие на кожу человека.

В клиническом испытании участвовали 13 добровольцев старше 40 лет. Они наносили крем с рапамицином на тыльную сторону одной руки и крем с плацебо на тыльную сторону другой руки каждые 1-2 дня перед сном.

Участники эксперимента посещали оценочные визиты каждые 2 месяца в течение 8 месяцев. Во время визитов исследователи фотографировали их руки, чтобы оценить морщины на коже и общий вид.

Выяснилось, что регулярное нанесение рапамицина на тыльную сторону рук сокращает морщины и уменьшает дряблость, а также улучшает тон кожи.

По истечении 8 месяцев на руках большинства участников, получавших лечение рапамицином, наблюдалось увеличение коллагена и снижение белка p16, показателя клеточного старения. Кожа с большим количеством таких клеток становится более морщинистой и медленнее заживает.

Через 8 месяцев большинство рук, получавших лечение рапамицином, показало увеличение коллагена и более низкие уровни маркера старения в клетках кожи по сравнению с теми, кто использовал плацебо.

В этом случае лечение рапамицином продемонстрировало явное влияние на старение кожи как на молекулярном, так и на клиническом уровнях.

Однако ученые отмечают, что эти результаты — всего лишь ранняя стадия их исследований, и им нужно сделать гораздо больше, прежде чем они смогут сказать, как лучше всего применять рапамицин для замедления старения.

Семинары по антивозрастной медицине Получайте знания, основанные на доказательной медицине из первых уст ведущих мировых специалистов. В рамках Модульной Школы Anti-Age Expert каждый месяц проходят очные двухдневные семинары, где раскрываются тонкости anti-age медицины для врачей более 25 специальностей
Узнать подробнее

Краткие выводы

  • У иммунодепрессанта рапамицина, вероятно, есть антивозрастные свойства;
  • В экспериментах на мышах препарат показал увеличение продолжительности их жизни;
  • Также рапамицин продемонстрировал омолаживающее действие на кожу человека;
  • Однако для того, чтобы начать применять его как anti-age препарат, необходимы дополнительные наблюдения, чтобы исключить и минимизировать возможные риски.
Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]